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This study proposes a method for uniformly revolving swarm robots to entrap multiple targets, which is
based on a gene regulatory network, an adaptive decision mechanism, and an improved Vicsek-model.
Using the gene regulatory network method, the robots can generate entrapping patterns according to
the environmental input, including the positions of the targets and obstacles. Next, an adaptive decision
mechanism is proposed, allowing each robot to choose the most well-adapted capture point on the
pattern, based on its environment. The robots employ an improved Vicsek-model to maneuver to the
planned capture point smoothly, without colliding with other robots or obstacles. The proposed decision
mechanism, combined with the improved Vicsek-model, can form a uniform entrapment shape and
create a revolving effect around targets while entrapping them. This study also enables swarm robots,
with an adaptive pattern formation, to entrap multiple targets in complex environments. Swarm robots
can be deployed in the military field of unmanned aerial vehicles’ (UAVs) entrapping multiple targets.
Simulation experiments demonstrate the feasibility and superiority of the proposed gene regulatory
network method.
© 2022 China Ordnance Society. Publishing services by Elsevier B.V. on behalf of KeAi Communications

Co. Ltd. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/
licenses/by-nc-nd/4.0/).
1. Introduction

The development of swarm robot system is a challenging
endeavor in robotics [1]. Swarm intelligence is based on the
concept that individuals, through cooperative interaction, produce
collective intelligent behaviors [2,3]. Extensive research on swarm
robotics has been conducted in recent years [4e9]. Swarm intelli-
gence has various applications, including industrial manufacturing
[10], warehouse logistics [11], disaster response [12], scenario
reconstruction [13], and military surveillance [14].

Entrapment is one of the main directions of swarm intelligence
research. Entrapment methods are primarily classified as follows:
behavior-based approach [15,16], leaderefollower model [17,18],
virtual structure method [19,20], and biomimetic approach
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[21e25]. The key idea of the behavior-based approach is the design
of various basic behaviors and an effective behavior coordination
mechanism. Basic behaviors include robot collision avoidance,
obstacle avoidance, and formation maintenance [15,16]. This
method is suitable mostly for simple tasks. For the leaderefollower
method, an agent in the system is designated as the leader, and its
trajectory is controlled [17,18]. The individual agents follow the
leader. Meanwhile, the following agents maintain a specific geo-
metric relationship with the ones leading. However, this method
cannot enable the agents to generate an adaptive formation suited
to the environment according to the environmental information.
The virtual structure method considers the system to be a rigid
body virtual structure, and each member controls its own behavior
according to its position relative to that structure. The process of
this method is as follows: (1) The desired dynamic behavior of the
virtual structure is specified; (2) The motion of the virtual structure
is translated into the desired motion of each robot; and (3) each
robot assumes the expected behavior [19,20]. However, when
agents are in a complex environment with obstacles, a fixed shape
of KeAi Communications Co. Ltd. This is an open access article under the CC BY-NC-
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cannot copewith the environment flexibly. Wang et al. proposed an
adaptive algorithm named AGENT for entrapping multiple targets
based on Vicsek-model [21]. This method enables swarm robots to
avoid obstacles flexibly, and uses adaptive group division for
entrapping multiple targets.

Another interesting line is the method based on biological
inspiration. The gene regulatory network (GRN) is a robust self-
organizing mechanism for simulating biological morphogenetic
development. Recently, the GRN method has been used in multi-
robot entrapping tasks [22e25]. Jin et al. [26] proposed a hierar-
chical GRN (H-GRN) that enabled the agents to generate an
entrapping formation according to the environmental changes. Oh
et al. [27,28] proposed an evolving hierarchical GRN (EH-GRN) for
swarm robots to entrap targets in environment with obstacles.
Peng et al. [29] proposed a pattern adaptation strategy where ro-
bots entrapped each target separately with split sub-patterns. Wu
et al. [30] introduced a cooperation-based GRN method assuming
that the agent can use sensors to receive information about its
neighbors and record it in its own coordinate system. The partner's
position was used as input to trigger changes in pattern formation.
Building on GRN-based research, Fan et al. [31] proposed an auto-
mated design framework, including structures and parameters,
with the genetic programming method for automatically gener-
ating entrapment patterns. The framework generated GRN models
exhibiting better performance compared with those designed by
human experts in complex and dynamic environments yet with
simpler GRN structures.

Although the previous GRN method provides an effective
pattern generation mechanism for robot swarm entrapment, it still
has some areas to improve. For example, it lacks an efficient swarm
decision-making mechanism that can realize a uniform pattern
distribution of robots for entrapping multiple targets. In addition,
the robot while entrapping targets may repeatedly jump forward
near the generated pattern and have a non-uniform position dis-
tribution relative to the pattern, which desires for a better velocity
control mechanism. In this paper, we propose a multiple-target
uniformly revolving entrapment GRN (RE-GRN) algorithm with a
decision-making mechanism and velocity control mechanism to
solve these two problems.

The primary contributions of the study are as follows:
�The structure of the RE-GRN method is divided into three

layers: Entrapment pattern generation layer, decision-making
layer, and motion control layer. This framework can be used to
extend the execution of various swarm tasks by modifying the
relevant layer.

� A new mechanism to allocate captures points to entrapping
patterns is proposed. The number of capture points corresponds to
the number of robots and targets. This approach improves the
uniformity of the division of robot groups when entrapping mul-
tiple targets.

�A decision-making mechanism for each robot in the swarm is
proposed that allows it to choose the most suitable capture point in
the pattern that revolves about the pattern as the target moves,
facilitating more efficient and effective entrapment.

�An improved Vicsek-model to achieve smooth motion of the
robots towards their target points mimicking natural population
motion is proposed.With this method, the robot can adaptively and
smoothly travel through complex obstacles to reach the target
point according to the environmental conditions.

To the best of our knowledge, this is the first study where the
agents can revolve around targets along the changing entrapping
pattern and entrap the targets. It can make the robot maintain a
relatively higher entrapping velocity and constantly change the
entrapping position, so that the target cannot obtain a static
entrapping formation gap, which prevents the target from escaping
2

through the gap of the entrapping formation and enable the robot
swarm to achieve tighter and more flexible entrapment [33e35].
Furthermore, if the swarm robots keep relatively static with the
target, they will not have the speed advantage when the target
wants to escape. In this case, the speed of the swarm robots
revolving around the target will enable them to respond more
quickly when the target attempts to escape, which reduces the
requirements for the robot to accelerate to a certain speed. More-
over, orbiting the target enables the sensors carried by the swarm
robots, such as visual sensors, play a greater role. If other targets
appear, they are more easily detected by the patrolling robots, and
the formation can be adjustedmore responsively when robots have
a certain starting speed. In conclusion, the entrapping mechanism
proposed in this study is beneficial and worth to be further
investigated.

The rest of the paper is organized as follows. Section 2 presents
the research question and summarizes the methodology. Section 3
proposes the methods, including the difference equation of the RE-
GRN model suitable for robotics to generate entrapping morphol-
ogies, the selection criterion of the robot's target points on the
entrapment pattern to achieve a uniform distribution, and the
maneuvering of the robots to the target point. Section 4 compares
the RE-GRN method with the previous GRN as well as AGENT
methods, with comprehensive experimental results analyzed.
Section 5 summarizes the study's findings, limitations, and future
research directions.

2. Problem statement

Gene regulation is the mechanism by which organisms control
gene expression. The GRN method is mainly divided into three
aspects. First, regulation at the DNA level, transcriptional control,
and translational control. Second, microbes adapt their metabolism
to the environment through the GRN. Third, multicellular organ-
isms enable cell differentiation, morphogenesis, and ontogeny
through biological gene regulation. This study mainly draws on the
mechanism by which microorganisms adapt to their environment
by changing their metabolism through gene regulation. Microor-
ganisms exhibit a high degree of adaptability to environmental
conditions during development and rapidly regulate the expression
levels of various genes in response to environmental stimuli.

Previous studies [21e28] utilized GRNs and morphological
gradients to realize the morphogenesis of swarm robotic systems.
The fundamental idea of applying gene expression mechanisms in
biological morphogenesis to swarm robotic control is to establish
an analogy between microbes and robots. Microorganisms regulate
their own protein production based on environmental information.
Changes in protein concentration affect the environmental infor-
mation received by microorganisms, affecting the microorganisms
in return. Microorganisms undergo this regulatory process to better
adapt to the environment. The behavior pattern of this type of
microorganism is analogous to that of a robot. A robot also estab-
lishes the concentration field of the target and obstacles informa-
tion and adjusts its movement through its own concentration field
accordingly, which, to a certain extent, reflects the environmental
adaptability of the robot.

In this study, the GRN was used to coordinate a swarm of robots
to entrap multiple targets. As illustrated in Fig. 1, the algorithm has
a three-layer structure: An upper layer, a transition layer, and a
lower layer. The robot maps the target and obstacle position in-
formation in the upper layer to generate the intermediate products
g1, g2, g3 and . These products represent concentration maps with
different levels of information about the target and the obstacles
(e.g., g1 is the robot considering the concentration information
required to fly close to the target, g2 is the concentration
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information for the robot to fly away from the obstacle, g3 simul-
taneously couples the concentration information of the robot flying
away from the obstacle and close to the target). The robot generates
a concentration information map that adapts to the current envi-
ronment by regulating g1, g2, and g3. The mechanisms of g1, g2, and
g3 (including the logical structure and parameters) is automatically
evolved by genetic programming. The robot samples the concen-
tration field with a specific concentration value to take the target
surrounding form M which considers both the obstacle and target
information in the robot's environment.

The second layer is the transition layer. Based on the two-layer
structure of the original GRN, we constructed the transition layer
for the robot's decision-making mechanism. After that, the robots
select the most suitable capture points, which are uniformly
distributed along the entrapping pattern. In addition, the robot can
revolve along the entrapping pattern, creating a flow entrapping
effect like the fluidity of cell membranes (the cell membrane also
flows to wrap the cell). In this layer, each robot selects its most
suitable capture point in real time. In Fig. 1, the robot's decision for
the capture point is denoted by D.

The third layer of RE-GRN provides a new velocity control
mechanism, in which the robot navigates towards the target posi-
tion through a modified Vicsek-model (represented by F in Fig. 1).
Gabor et al. [32] presented a flocking velocity control model based
on the Vicsek-model for real drones. Their experiments demon-
strated that the induced swarm behavior remained stable under
realistic conditions for large flock sizes. Inspired by this research,
we propose an improved Vicsek-model, which considers four ve-
locity action terms: the movement of the robot to the goal capture
points (represented by t), obstacle avoidance (represented by o)
and collision avoidance between robots and targets(represented by
r). Finally, the vector superposition of the separately calculated
velocity components determines the predicted speed of the robot
at the time. The maximum limit was superimposed on this velocity
Fig. 1. Flowchart of the multiple-target uniformly
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for practical considerations of engineering applications. In this way,
the robot can achieve a smooth maneuver to its goal capture point,
leading to a collective movement behavior of the robot swarm
similar to that of a natural population. To the movement pattern of
the natural population.

Based on the three-layer mechanism, robots can uniformly
entrap multiple targets, revolving in each pattern and tightly
entrapping each target. Throughout the movement process, the
robot swarm maneuvers as smoothly and naturally as the natural
population. The design flowchart of the RE-GRN method is illus-
trated below.

3. Methods and strategy

3.1. Upper layer: gene regulatory networks generate entrapping
morphologies

In the upper layer of the RE-GRN, robots generate the mor-
phologies (patterns) for entrappingmultiple targets. These patterns
can be automatically generated by conceptualizing automation
ideas. The automated design of a GRN can significantly reduce the
workload on human designers. In another study [31], we used ge-
netic programming to automatically assemble and optimize the
GRN superstructure and parameters. A fitness function and a series
of assembly rules were established to generate the optimal struc-
ture adapted to the environment. For further details on the design
of the upper layer of the RE-GRN method, readers are referred to
Fan et al. [31].

After constructing the upper layer of the GRN by genetic pro-
gramming, we derived the differential equation for the generation
mechanism of the concentration of the upper layer of the network.
The commonly used mathematical models of the GRN include the
directed graph, Boolean network, Bayesian network, differential
equation, and difference equation model. Differential equation
revolving entrapment (RE-GRN) algorithm.



Fig. 2. Concentration field formed by considering the concentration information of
both targets and obstacles.
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models are widely used to construct small and precise GRNs. The
upper-level mechanism of the RE-GRN converts the differential
equation form of the original GRN into a difference equation one.
We assume that the robots can detect the locations of the targets,
obstacles, and other robots in the environment during the
entrapment task. The robots can communicate with one another to
share information about the positions of the targets and obstacles.
During the pattern-generation process, as the absolute position
information of the target is the same for all robots, they establish
the same pattern when applying the same RE-GRN mechanism.
Specifically, the upper layer equation of the RE-GRN is as follows:

pjðtþ1Þ¼V2pjðtÞ (1)

pðtþ1Þ¼
XNt

j¼1

pjðtþ1Þ (2)

The computation of the concentration gradients of the target
and obstacle by the Laplacian operator can be considered as a
simulation of the concentration diffusion of proteins in a biological
system. By solving the above equation, we obtained the form of
pjðtÞ as follows:

pjðtÞ ¼ e�v
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2ðtÞ þ y2ðtÞ

q
(3)

pðtþ1Þ¼
XNt

j¼1

pjðtþ1Þ (4)

where, xðtÞ and yðtÞ are the horizontal and vertical coordinate
distances of the robot from a target or obstacle. As this distancemay
vary with time, it can be expressed as a function of time t. The
exponent v is the concentration diffusion factor, which can be used
to adjust the mapping relationship between distance and concen-
tration. pjðtÞ represents the protein concentration generated by the
jth target or obstacle location information. p represents the
comprehensive protein concentration produced by all the detected
targets or obstacles at the current robot position from j ¼ 1 to Nt .
Among them, Nt is the total number of detected targets or
obstacles.

g1ðtþ1Þ¼ sigðp;b1; kÞ (5)

g2ðtþ1Þ¼1� sigðp;b2; kÞ (6)

g3ðtþ1Þ¼ sigðg1 þ g2;b3; kÞ (7)

sigðr;b; kÞ¼ 1
1þ e�kðr�bÞ (8)

The robots construct the concentration information fields g1, g2,
and g3 on the map after processing the obstacle or target position
information. The upper layer of the RE-GRN can take several forms.
Therefore, the methods of calculating g1, g2, and g3 in the upper layer
of different GRNs are not identical. Particularly, in the superstructure
of the RE-GRN, g1 and g2 process the inputs of the target and obstacle
position information separately. The final concentration information
field is then coupled by g3 to form the information map with the
highest concentration of robots. r is the distance between the robot
and the target (or the obstacle). We assume that b1, b2, and b3 are the
thresholds of the sigmoid function. Thus, by adjusting b, we can
adjust the interval range of the entire generated concentration field. i
is the concentration difference adjustment coefficient. The larger the
4

k, the more evident the concentration difference. A smaller k makes
the concentration difference close to linear. The range of k is the
concentration difference adjustment coefficient. The larger the k, the
more evident the concentration difference. A smaller k makes the
concentration difference close to linear. The range of b is 0 e 1, and
the range of k is 0 e 2

Through this mechanism, the concentration fields of the
obstacle and target position information are calculated using Eq. (3)
and Eq. (4), respectively. The processed fields are combined into a
concentration field (Fig. 2) by using Eq. (5)eEq. (8) containing both
types of information.

The robots sample the specific concentration values on the final
concentration map to form a pattern suitable for the current situ-
ation. If the robots assemble into this pattern, they can surround the
targets while avoiding the obstacles. Thus, the swarm robots only
need to aggregate in this pattern and produce the desired swarm
behavior.
3.2. Transition layer of RE-GRN: decision making

In Subsection 3.1, the RE-GRN algorithm provides an entrap-
ment pattern that adapts to the environment of the robots. In this
section, we attempt to design a reasonable mechanism that can
make robots allocated for the capture points on the pattern, to
satisfy the condition of the uniform distribution of the swarm ro-
bots on the pattern generated by the upper layer of the RE-GRN. To
this end, we construct a mechanism to allocate capture points to
the swarm robots. The algorithm for this mechanism is as follows:

Algorithm 1. An adaptive uniform allocation framework for the
capture points on multiple-target entrapment pattern

Input: Location of the pattern, number of robots, positions of
robots;

Output: The capture points on the pattern of robot i.

1. The number of robots is defined as Nr. The number of pat-
terns is Np (patterns will merge if targets are too close;
hence, the number of robots should be evenly distributed
according to the number of patterns).

2. Calculate the sampling interval for the capture points in the
current situation. m ¼ Nr=Np.

3. The capture points are numbered 1 to m counterclockwise
from the reference point. When the robot is not assigned to a
capture point, its flag is 0. If not, it stores the capture point
number and changes its flag to the capture point number.

4. If robot i has the highest priority in the swarm, robot i selects
capture points as reference points and broadcast to the
swarm. Or robot i receives the reference points through
communication.



Fig. 3. Schematic of the scenario of a robot switching capture points in a standard
circular pattern.
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5. Robot i samples each pattern into N points with N= m as the
sampling interval, and obtain m points as the capture points
of the robots. N is a self-designed integer multiple of m.

6. The robot i traverses all capture points in its list and finds the
nearest one. The robot broadcast its own flag and the dis-
tance to its capture point.

7. for j ¼ 1 to Nr
8. If Robot i’s flag is same with robot j’s flag (that is, the two

robots have selected same capture point; here, it is assumed
to be capture point e. The distance between the robot i and
the capture point e < the distance from the robot j to the
capture point e. then

9. Establish the mapping relationship between the robot i and
the capture point e.

10. else
11. Establish the mapping relationship between the robot j and

the capture point e. The robot i removes the capture point e
from its list. Go to 6

12. end if
13. end for
14. The robot i uses the Vicsek-model to approach its capture

point.

To ensure that all robots in the distributed system obtain the
same information about the capture points, the robots need to
determine the reference point (the first capture point) of all capture
points through communication. The robot with the highest priority
in the swarm (preset by the system) determines the reference point
by random in the pattern and constantly broadcasts the position of
the reference point to the other swarm robots. If the robot with the
highest priority in the system is damaged, the robot with the sec-
ond highest priority will assume its role again and so on. All robots
in the swarm will receive the position information of reference
point. Meanwhile the pattern is divided into segments to obtain the
list of capture points. In the capture point allocation mechanism,
the list of capture points calculated by all robots is the same. Every
robot autonomously selects the capture point most suited
(considering the distance factor and the other robots’ position) to
their current position. Consequently, the robots achieve a reason-
able distribution of capture points on the pattern and choose the
most suitable capture point as the destination.

As mentioned earlier, the robot's revolution around the target
reduces the chance that the target accelerates away if the target
does not want to collide with the robot. We propose a mechanism
to help the robots revolve in the entrapment pattern, called refer-
ence point change. Here, the change of the reference point (the first
capture point) forces all capture points to change, thus leading the
robots to revolve in the pattern. In order to express this mechanism
more clearly, we model the circular pattern in the ideal environ-
ment. The pattern will change its position with the movement of
targets. After the robot has confirmed the reference point and used
it to determine all capture points, the reference point e1 on the
pattern will change to the closest capture point e2 in the pattern at
the next moment, which becomes the new reference point (The
overall position of the pattern will change as the target moves, and
accordingly the positions of all the capture points on the pattern),
and the process is repeated. Fig. 3 depicts a standard circular
pattern as an example (the entrapment pattern in a free obstacle
environment with one target is a standard circle) to model the
revolution mechanism. Thus, the robots exhibit revolutionary
motion. The figure has two straight lines: the connecting line be-
tween the positions of the reference point and the target, and the
straight line with the target's direction of motion. We define the
angle between these two straight lines as qðtÞ. The angle between
two lines at the next moment is qðt þ 1Þ.
5

However, under this behavioral mechanism, the revolution
behavior of the robot is not constant. In the case of constant target
motion, if the reference point moves to the intersection (s1) of the
reverse extension line of the target's motion direction and the
pattern, the reference point s1 is closest to the reference point s2 in
the newpattern and the direction ofmovement of the robot from s1
to s2 is parallel to the direction of target motion. At this time, the
robot stops revolving in the pattern, while the target continues to
travel in the same direction. To sustain this revolution behavior,
robots limit the change of the reference point position to one cycle
(c1� c2). For representation, as illustrated in Fig. 4, the target is
placed at the center of the circle, the direction of velocity of the
target is the 0� reference axis, and the reference point is (coun-

terclockwise) between p
2 � p,NpNr and p

2 þ p,NpNr within the angular
range. Here, Np is the number of patterns, and Nr is the number of
robots. Initially, the robot in swarmwith highest priority randomly
selected a capture point as the reference point. As this reference

point moves with the target to c2 (revolving (p2þ p,NpNr)
� counter-

clockwise from the 0� reference axis), the reference point is reset to
the capture point near c1 (revolving (p2� p,NpNr)

� counterclockwise
from the 0� reference axis). This process is repeated continuously to
realize the periodic transformation of the reference point. The
following equation calculates the revolutionary velocity of the
robot as a function of time, as the robot encounters a circular
pattern.

vrðtþ1Þ¼ r �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2 � 2rv cosðqðtÞÞ

q
(9)

q

�
tþ1

�
¼p� arcos

�
v� r cosðqðtÞÞ

r2 þ v2 � 2rv cos
�
q
�
t
��� (10)

where, vrðtþ1Þ and qðtþ1Þ are the magnitude and direction of the
revolutionary velocity of the robot in the pattern, respectively.
Notably, the equation is fully applicable when q is an acute angle. At
time tþ 1, the revolutionary velocity component of the robot along
the pattern is deduced as follows. For an obtuse included angle, the
target is assumed to have reversed its direction. Thus, it becomes an
acute angle according to the definition of q, and the equations are
still applicable. Particularly, its velocity when q is a right angle is as
follows.

vrðtþ1Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ v2 � r

p
(11)



Fig. 4. Schematic of the scenario of a robot switching the reference point in a standard
circular pattern.
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3.3. Lower layer of RE-GRN: motion control

The first two layers (upper and transition layers) of the RE-GRN
were introduced in the last two sections. In the upper layer, the
robots generate the concentration field, while in the transition
layer, they sample the field to generate a pattern and adaptively
allocate capture points to uniformly entrap multiple targets. Each
robot must move to the corresponding position on the target's
entrapping pattern. To this end, we proposed a flocking motion
velocity controller based on an improved Vicsek-model. Although
the upper layer of the RE-GRN already considers the position in-
formation of obstacles and targets, the robots may still be relatively
too close to the obstacles or targets as they form the pattern.
Therefore, the purpose of the lower layer algorithm is to allow the
robots to smoothly navigate to the capture points calculated in the
first two layers of the RE-GRN without colliding with the neigh-
boring robots, targets, or obstacles. Therefore, this section is
divided into three parts, including repulsion, obstacle avoidance,
and maneuvering toward the target.
3.3.1. Repulsion
As the robot maneuvers, it may occasionally tread too close to

other robots. For safe navigation, we introduced a mutually exclu-
sive speed between robots in the Vicsek-model [32]. rarep is the
distance at which the local repulsion is activated, and larger values
create sparser flocks with fewer collisions. If the distance between
the agents is less than rarep, the robots will generate a repulsion
velocity to maintain a safe distance from their neighbors.

vrepij ¼
(
prepa

�
rarep � rij

�
: rij if

�
rij < rarep

�
0 otherwise

(12)

where, rij ¼
��ri � rj

�� is the distance between robot i and robot j

rij ¼ ri�rj
rij

represents the direction(unit direction vector) of velocity

of robot j toward robot i. prepa is the linear coefficient of the repul-
sion velocity between robots.

The robots may also maneuver too close to the target as they
approach the capture point. To prevent the robots from colliding
with the target, we set a unidirectional repulsion velocity between
the robot and the target (in the swarm robot system, the target is
considered to be unaffected by the robot). If the distance between a
robot and its target is less than rtrep, the robot will generate a ve-
locity away from the target.
6

vrepitarget ¼
(
prept

�
rtrep � rit

�
: rit if

�
rit < rtrep

�
0 otherwise

(13)

Similarly, rit ¼ jri � rt j is the distance between robot i and its
targets. rit ¼ ri�rt

rit
represents the direction(unit direction vector) of

repulsion velocity of the target toward robot i; prept is the linear
coefficient of the repulsion velocity between a robot and its targets.
The algorithm in each robot should calculate the repulsion velocity
term for all the targets.

In order to get all the repulsive forces on the robot i, we calcu-
lated the vectorial sum of the interaction terms of repulsion:

vrepi ¼
X
jsi

vrepij þ
X

target
vrepitarget (14)
3.3.2. Obstacle avoidance
A robot may encounter obstacles as it approaches the capture

points on the pattern. To allow the robot to maneuver smoothly as
it circumvents an obstacle, the obstacle avoidance speed should be
gradually attenuated at a greater distance from the obstacle.
FunctionDðr; a; pÞ can provide a smooth velocity decay curve for the
velocity change between the robot and the desired stopping point,
where r is the distance between the robot and the desired stopping
point, p determines the crossover point between the two phases of
deceleration, and a is the robot's preferred acceleration [32].

Dðr; a; pÞ¼

8><
>:

0 if r � a=2p
rp if a=2p< rp � a=pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2ar � a2
.
p2

r
otherwise

(15)

To help the robot safely avoid collision with an obstacle in the
environment, we assume the presence of a virtual agent at the
point closest to the robot on the boundary of the obstacle [36]. Each
robot has a corresponding virtual agent as it approaches an
obstacle, and the position of the virtual agent changes with the
position of the robot.

vobsid ¼
(
0 if ðrid > ¼ robsÞ
Cd,

h
vid � D

�
rid � robs; a

d;pd
	 i

,vid otherwise

(16)

where, cd is the strength (velocity coefficient) of the distance from
the obstacles, and robs is the safe distance between the robot and
the obstacle. Larger values of this distance prompt the robot to start
braking at greater distances from the obstacle. rid ¼ jri � rdj is the
actual distance of the robot i from its nearest obstacle. vid ¼ jvi �
vdj, where vd is the velocity of the virtual agent pointing perpen-
dicularly inward to the boundary of the obstacle in the arena. vid ¼
vi�vd
vid

, vid is the unit direction vector of the velocity vector difference

between the robot i and its virtual agent. This obstacle avoidance
method helps the robot avoid falling into the local minimum. ad is
the maximum allowed acceleration on the optimal braking curve.
Higher values of this acceleration imply faster braking by the robot.
Excessively high values would result in the failure of the robot to
react to excessively large velocity gradients in time, thus causing
collisions. pd is the linear gain of the optimal braking curve, which
is used to determine the maximum allowable velocity difference.
Large values of this gain approximate the braking curve to the
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constant acceleration curve, while small values elongate the final
part of the braking (at a small velocity) with decreasing accelera-
tion and smoother stops.

3.3.3. Move toward the goal position
Another topic of interest is enabling the robot to approach the

goal capture point with a gentle velocity. As introduced earlier, the
function ad establishes a mapping relationship between the ve-
locity and the distance to the desired goal capture point, forming a
smooth velocity decay curve affected by the distance factor. In this
section, we employ the following function to construct a new
navigation speed function for the goal capture point.

vig ¼
h
vf þ Cg: D

�
rig; a

g; pg
� i

: rgi (17)

where, the initial velocity vf of the agent is preset, and Cg is the
preferred common traveling velocity coefficient for all agents to
approach the goal position. rig ¼ ��ri � rg

�� is the distance between
the agents ag and its goal position. ag is the maximum allowable
acceleration on the optimal braking curve. pg is the linear gain of
the optimal braking curve, which is used to determine the
maximum allowable velocity difference. ag and pg are the same as
ad and pd, but for wall alignment interactions. rgi ¼ rg�ri

rig
, rgi is the

direction(unit direction vector) in which the agent points toward
the goal position. It is worth noting that rit and rig are different. rit is
the distance from the robot i to the target, and rig is the distance
from the robot i to the position of the goal entrapping point on the
entrapping pattern.

3.3.4. Final equation of desired speed
The robot needs to consider both these velocity effects. We

calculate the vectorial sum of all the interaction terms:

vdesirei ¼ vrepi þ vobsid þ vig (18)

For practical applications, we set a cutoff velocity vlimit to

compensate for the motion restraint. If the velocity ~vdesirei exceeds
the limit, then maintaining the direction of the desired velocity
while reducing its magnitude yields the following equation:

~vdesirei ¼ ~vdesirei��~vdesirei

��,min
n���~vdesirei

���; vlimit

o
(19)

4. Experiments and index evaluation

4.1. Simulation experiments

In this section, the performance of the proposed RE-GRN
method is verified using simulation experiments based on MAT-
LAB and CoppeliaSim simulation platform. Simulations based on
MATLAB are used for proof-of-concept given global information.
We used GRN method, AGENT method and RE-GRN method to do
the comparative experiment in five scenarios to verify the validity
and robustness of these methods. In the RE-GRN simulations based
onMATLAB, the robots obtain the same obstacle and target position
information in the same coordinate system (with global informa-
tion known), so the entrapping shape calculated by them is iden-
tical. The robots can communicatewith each other to determine the
location of the reference point to synchronize the locations of all
7

the capture points. The following five scenarios are considered.

(1) Obstacle-free environment. Two targets are in circular mo-
tion around a fixed point in the arena and are being trapped
by agents (Scenario 1).

(2) Fifteen robots trap two targets. The environment contains
two obstacles (Scenario 2).

(3) Ten robots trap one target. The unknown environment con-
tains several obstacles. The robot may encounter an unfore-
seen obstacle around the next corner (Scenario 3).

(4) Fourteen robots trap two targets. The environment has many
barbed obstacles (Scenario 4).

(5) Twelve robots trap two targets. The environment has several
square obstacles in the environment. Two targets move
arbitrarily in the environment (Scenario 5).

As demonstrated by these scenarios (Figs. 5e17), the RE-GRN
performs best among the three methods can realizing that the
robot swarm orbits the target while entrapping the target. The
previous GRN method has an evident problem of the irregular
distribution of robots in a pattern. The robots jump back and forth
into the pattern when approaching it but do not completely settle
down on it. The RE-GRN method overcomes this drawback. The
robot applying AGENT method achieves a better entrapping effect
than the GRN method, but the entrapping effect is not as ideal as
the RE-GRN method, which is reflected in the fact that AGENT
method cannot enable a revolving entrapping effect, and the uni-
formity of entrapping is not as good when trapping multiple
targets.

Notably, the method demonstrates distinct advantages over the
existing method when entrapping multiple targets with swarms.
As observed in Fig. 15eFig. 17, the two targets perform a L�evy flight
[37] above the field (a random movement step generation mech-
anismwhen some living creatures forage), and the robots apply the
GRN method, AGENT method and RE-GRN method to respectively
entrap the two targets. The division of groups in the RE-GRN
method is evidently more uniform than that in the GRN method
and AGENT method when trapping multiple wandering targets. In
the RE-GRN method, the robots are uniformly distributed on the
pattern, and constantly adjust their motions as the pattern changes.
The robots maintain a safe distance from the nearby targets, ob-
stacles, and other robots, avoiding collisions.

To further verify the effectiveness of the RE-GRN algorithm, we
conducted more experiments on CoppeliaSim. In this simulation,
the location of the target was known. The drones could detect other
drones and obstacles within the range of the sensor and broadcast
their detected obstacle position information in the swarm. This
ensures that all the robots in the swarm eventually have the same
concentration map and entrapping pattern. In this way, all robots
can synchronize the list of capture points (see Section 3 for specific
mechanism). The experimental effect of drones entrapping multi-
ple targets is shown in Fig. 18.

Fig. 18 shows that, in the case of free movement of multiple
targets, the deployment of the RE-GRN algorithm in the drone
swarm can deal with multiple targets, achieve adaptive grouping,
and uniformly entrapmultiple targets. The drone swarm can revolve
along the entrapping pattern to tightly encircle the target. The
drones’ revolving entrapment effect can be observed in the video.

4.2. Index evaluation

By the definition of entrapment, the method must consider
distribution of robots in several directions around the target.
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Therefore, we calculate the occupancy rate of entrapment circle, i.e.
the presence of robots in six directions (we divided the 360� area
around the target into six sectors) to evaluate the trap quality.
Furthermore, the robots must efficiently trap the targets, which
may be reflected by the distance the robots traveled to trap those
targets. In addition, the robot should also pay attention to its own
safety. Therefore, their velocity should not change significantly over
time as that could be detrimental to their stability. In summary, this
study uses the following evaluation indicators to digitize the
experimental results:

(1) The uniformity of the number of robot groups when trapping
multiple targets (Fig. 19).

(2) The occupancy rate of each target in the entrapment circle
(Fig. 20).

(3) The average distance traveled by robots to entrap (Encircle-
ment occupancy ¼ 6/6) the targets (Fig. 21).

(4) The velocity correlation [32] jcorr of the robot at consecutive
moments (Figs. 22e24).
Fig. 5. Twelve robots trap two targets in an obstacle-free environment with the GRN (left
jectories (Scenario 1).

Fig. 6. Fifteen robots trap two targets in the environment of tw

Fig. 7. Fifteen robots trap two targets in the environment o

8

jcorr ¼ vi,viþ1
jvij,jviþ1j

(20)

Eq. (20) gives the calculation formula of velocity correlation.
These indicators demonstrate the enhanced performance of the

RE-GRN method for multi-target entrapment over the previous
method.

As depicted in Fig. 19, the robots can be grouped as they entrap
multiple targets. The number of robots allocated to each target was
calculated and plotted. The data reflect the stability of the RE-GRN
method in terms of group division. In Fig. 20, the robot forms a tight
siege around the target. In most cases, the occupancy rate of the
encirclement is 6/6 which confirms the superior entrapping per-
formance of the RE-GRN method. In addition, Fig. 21 illustrates the
average distance traversed by the robots to trap the targets
(Encirclement occupancy ¼ 6/6) under the three methods. The RE-
GRN method requires the robots to travel a significantly shorter
distance to trap the targets. We have carried out the significance
test of difference, and the test results show that the method
), AGENT(middle) and RE-GRN methods (right), and the scenario illustrates their tra-

o obstacles with the previous GRN method (Scenario 2).

f two obstacles with the AGENT method (Scenario 2).



Fig. 8. Fifteen robots trap two targets in the environment of two obstacles with the RE-GRN method (Scenario 2).

Fig. 9. Ten robots trap one target in the environment with many obstacles with the previous GRN method (Scenario 3).

Fig. 10. Ten robots trap one target in the environment with many obstacles with the AGENT method (Scenario 3).

Fig. 11. Ten robots trap one target in the environment with many obstacles with the RE-GRN method (Scenario 3).
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proposed in this study has significant advantages compared with
the two comparison methods.

As the robots maneuver, the change in velocity at two consec-
utive moments must be sufficiently small to meet practical re-
quirements. Figs. 22e24 show that in the previous GRN method,
the robot's continuous motion correlation is very low, which is
9

close to �1 most of the time, which means that there may be vi-
bration in the robot'smotion. In addition, in the AGENTmethod, the
robot's continuousmotion correlation is very high, which is close to
1most of the time, whichmeans that the robot does not change the
direction frequently, and does not have the effect of revolution
around the target. In the RE-GRNmethod, the motion correlation of



Fig. 13. Fourteen robots trap two targets in the environment with barb obstacles with the AGENT method (Scenario 4).

Fig. 12. Fourteen robots trap two targets in the environment with barb obstacles with the previous GRN method (Scenario 4).

Fig. 14. Fourteen robots trap two targets in the environment with barb obstacles with the RE-GRN method (Scenario 4).

Fig. 15. Twelve robots trap two wandering targets in complex obstacle environment with the previous GRN method (Scenario 5).
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the robot at continuous time is almost evenly distributed between
[�1, 1], which indicates that the robot changes the motion direction
continuously and smoothly in most of the time, reflected by the fact
that the robot orbits the target.

From the experimental results shown in the video, we can also
observe that the robots by applying RE-GRN algorithm can auton-
omously make decisions when encountering multiple targets and
execute the swarm behaviors of grouping while trapping multiple
10
targets. With this method, robots can adapt to the environmental
conditions and accordingly change the entrapping pattern without
colliding into the neighboring robots or obstacles. The experi-
mental indicators of this study prove the potential of the RE-GRN
model in target entrapment applications. The entire system can
be deployed on robots in a distributed manner and can be safely
applied in industrial and military applications.



Fig. 16. Twelve robots trap two wandering targets in complex obstacle environment with the AGENT method (Scenario 5).

Fig. 17. Twelve robots trap two wandering targets in complex obstacle environment with the RE-GRN method (Scenario 5).

Fig. 18. Forty drones trap four targets in the CoppeliaSim simulation: (a) Initial scenario; (b) Drones are divided into four groups to trap targets; (c) Drones are divided into two
groups to trap targets; (d) Drones form a large circle to trap the four targets.
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5. Conclusions

The RE-GRNmethod proposed in this paper gives a novel idea of
orbiting multiple targets while entrapping them in the military's
11
application of the UAV swarm system. In this study, a three-layer
algorithm framework is put forward to carry out environmental
information transformation, adaptive decision making, and motion
control respectively. Firstly, the concentration field of the



Fig. 19. Uniformity of the division of robot groups.

Fig. 20. Robot occupancy rate of entrapment circle for each target.

Fig. 21. Average distance traveled by the robots to trap all the targets.

C. Wang, Z. Shi, M. Gu et al. Defence Technology xxx (xxxx) xxx
information on the targets and obstacles is constructed to obtain
the entrapping pattern. The designed decision mechanism then
samples the entrapping pattern to generate capture points to form
a uniform distribution of robots around the entrapping targets. The
robots' orbiting the targets enables them to entrap the targets more
tightly and effectively. Moreover, this study improves Vicsek-model
to make robots more smoothly approach capture points. During
this process, the robot can maintain the effect of collision-free
flocking and obstacle avoidance.

According to the five experimental scenes in MATLAB experi-
ments, robots by applying RE-GRN method can flexibly deal with
varying complex obstacle scenarios, and change entrapping pat-
terns adaptively to trap multiple targets while orbiting them. This
study designed evaluation indexes considering entrapping task
completion efficiency and the flocking effect. As shown in the
evaluation indicators, the RE-GRN method outperforms the GRN
method and AGENT method in the task of entrapping multiple
targets, with a better encircling and revolving effect. Furthermore,
we carried out simulation on the CoppeliaSim Simulation platform,
which demonstrates that when entrapping multiple targets, the
UAV swarm can effectively divide into groups and orbit the targets
with a success.

However, the proposedmethod relies on global communication,
12
which is not conducive to the deployment of drones in no-
communication zones in military applications. Therefore, future
studies aims to reduce the reliance of the method on communi-
cation. It is also very worthwhile to conduct physical experiments
to validate the proposed RE-GRN algorithm. For this purpose, we
have designed the prototype of individual swarm robots for 2D
experiments and are developing UAV system for 3D experiments.
This ongoing work will form the major part of the next step
research.



Fig. 22. Velocity correlation of robots at consecutive moments (GRN method).

Fig. 23. Velocity correlation of robots at consecutive moments (AGENT method).

Fig. 24. Velocity correlation of robots at consecutive moments (RE-GRN method).
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Appendix

Matlab experiment video: https://www.bilibili.com/video/
BV1eF41137Nm?spm_id_from¼333.999.0.0.

CoppeliaSim simulation video: https://www.bilibili.com/video/
BV1XF411W75e?spm_id_from¼333.999.0.0.
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